
Grade 7/8 Math Circles

Week of 13th November

Types of Numbers

The History of Numbers

Numbers have been around since the dawn of time, from carving notches into bone for basic counting,

to solving roots of polynomials. The earliest known record of a proper numbering system dates back

5000 to 6000 years ago in ancient Mesopotamia. Even earlier than that, archaeologists discovered the

use of tally marks in wood, bone, and stone, dating all almost 40000 years ago. Some time evolved,

and money was in full use – from silver coins, to gold ingots. Money needed to be divided evenly

amongst its users, and fractions were readily available. The modern day numbers you and I use in

our everyday lives was spread throughout India, and were called the Arabic number system.

Image retrieved from Wikipedia

In the image above, we see the numerous numeral systems throughout history. Mathematicians

take pride in their numbers; studying and classifying them extensively. They use numbers to count,

measure, and label. Numbers are a very important aspect to mathematics as they quantify much of

what we wish to describe; coefficients of polynomials, infinite series, evaluation of integrals, and so

on.

Before moving on!

The term “set” will be used often throughout this lesson. A set is an unordered collection of

distinct things, objects, or really anything you can fit between two curly brackets {}. For us,

we’ll use sets to put numbers in them, like so; {1, 2, 3}. We’ll talk more about sets later on!
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Natural numbers: N

The natural numbers are the first type of numbers we’ll examine. Natural numbers are called the

counting numbers, they comprise of the numbers

N = {1, 2, 3, 4, ...}

The funny letter N is the symbol common used to denote the natural numbers, and recall that the

the curly brackets {} are used to denote a set. We call the set above, the set of natural numbers. The

natural numbers do not include fractions, decimals, negative numbers, or zero (although some math-

ematicians argue N does contain 0). For example, we have that 100, 57, and 1029379426374273841

are natural numbers. On the other hand, 1
2
, π, and −1 are not!

Integers: Z

Negative numbers were used before the concept of 0. In terms of accounting, many different cultures

around the world used negative numbers to denote debt, or to cancel out transactions. The integers

closely resemble the natural numbers, in so much as, they contain the natural numbers, and then all

the negative numbers. They comprise of the numbers

Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}

Some examples of integers are −3, 0, and 10. On the other hand, −1
2
, 1.5, and π are not! It’s very

interesting to note, as stated previously, the integers contain the natural numbers. Mathematically,

we denote this as N ⊂ Z. We say, the “Natural numbers are a subset of the Integers”.

Rational Numbers: Q

What if we wished to represent numbers in between whole numbers, say between 0 and 1? With the

use of fractions! Fractions add in a whole new set of numbers, called the rational numbers. We

call them this, because they are in reference to numbers that can be represented as the ratio of two

integers; that is

Q =

{
p

q

∣∣∣ p, q ∈ Z, q ̸= 0

}
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What you see above is the set notation for the set of rational numbers.

Note that the symbol “∈” just means “an element of”. We denote the rational number with Q, as

it stands for quotient. Rational numbers date back to the Indians in 458, when they used decimals

in their works regarding astronomy. Since we note that any integer n can be expressed as a fraction,

namely as n
1
, we have that the integers are a subset of the rationals. Therefore, the chain continues

as follows N ⊂ Z ⊂ Q.

Irrational Numbers: Q̄

It was long believed by the ancient Greeks, namely Pythagoras, that all numbers were rational.

Though, after a clever proof by a man named Hippasus, their entire world was flipped upside down

when he showed that there exists number that cannot be represented as a fraction of two numbers.

Stop and Think

Input
√
2 into your calculator, what is the output? Can you try representing this as a fraction?

Here is a quick proof that
√
2 is irrational. Assume for contradiction that

√
2 is rational, that means

√
2 =

p

q
where p and q are integers

and we can assume that p and q have no common factors. Following along with this logic, we’d have

that

2 =
p2

q2
=⇒ 2q2 = p2
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This means that p2 is even, which means that p is even (since when you multiply by even number

by itself, an even number, you get an even number). If p is even, so is q since they are related by

the expression p2 = 2q2. Thus, both p and q are even, and therefore both share a common factor of

2, contradicting our initial statement that they have no common factors. Thus, the square root of 2

cannot be rational, it cannot be expressed as a ratio of two integers.

Irrational numbers are numbers which don’t have repeated decimals, they are never ending. It’s

very important to note though that numbers with repeating decimals that are never ending, such as
1
3
= 0.3333... are rational, since it’s the same number repeated. For an irrational number, the never

ending sequence of decimals has to be random.

It’s very important to note that the square root of any number that ISN’T a perfect square, is

irrational! That means, for example,
√
5 and

√
6 are irrational, but

√
4 and

√
16 are rational.

Real Numbers: R

We now wish to encompass all the previously mentioned numbers, we do this with the set of real

numbers, R. The real numbers are defined to be any number that could ever exist on the number

line, it includes the naturals, integers, rationals, and irrationals. Our chains grows even more, with

N ⊂ Z ⊂ Q ⊂ R, as well as Q̄ ⊂ R. Therefore, some real numbers are π,
√
2, 10, 1

2
, and −2.

Before moving on!

The reason the irrationals are denoted as Q̄ is because it is the complement of the rationals,

which is denoted with a bar atop the set. The complement of a set is everything else that could

possible exist outside of the set. We’ll talk more about this in detail later in the lesson. Since

the rationals is the set of all real numbers numbers that can be represented as a fraction of two

integers, the complement is all the real numbers that cannot be represented as a fraction of two

integers, the irrationals !
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Exercise 1

Determine which sets the following numbers belong to. Make sure to list them all, even if they

are subsets of another set already given!

a) 11 b)
√
4

c) − 2

1
d)

√
11

e) 4.333... f) π

Complex and Imaginary Numbers: C & I

Let’s try solving the following equation for x. What do you notice?

x2 + 1 = 0

We notice that we are looking for a number that when squared, is equal to −1. This number doesn’t

exist in R, it exists in I. We call it i. That is i2 = −1.

(i)2 + 1 = (−1) + 1 = 0

We call these numbers imaginary numbers.

Example 1
Consider the equation 4x2 + 2 = −7, we have that

4x2 = −9

x2 = −9

4
√
x2 =

√
−9

4

x = ±3

2
i
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Exercise 2
Find what imaginary numbers satisfy the following equations. Write it as x = ai

x2 + 6 = −3 2x2 + 8 = 0 x2 + 5 = 0

Complex numbers are very closely related, they are numbers of the form a + bi, where a, b ∈ R.
They combine the imaginary numbers, with the real numbers. We denote a to be the real part, and b

the imaginary part. Some examples include 1+ i, 2+3i, and 1√
2
+πi. We generally use the following

notation: let’s say we have some complex number, z = a+ bi, then Re(z) = a, and Im(z) = b. Since

an imaginary number is just a complex number with real part equal to 0, i.e a = 0, we have that

I ⊂ C. And since a real number is just a complex number with imaginary component equal to 0, i.e

b = 0, we have that R ⊂ C. Thus, we’ve finally completed the chain of numbers,

N ⊂ Z ⊂ Q ⊂ R ⊂ C Q̄ ⊂ R I ⊂ C

We can visualize this with a large Venn diagram!

6



Where do Complex Numbers Live?

All the real numbers lie on the real number line, which looks like

Image retrieved from Wikipedia

They are all aligned on a straight axis. Since the complex number live in a whole new world, what

we do is extend the number line vertically!

Image retrieved from Cue Math

Thus, if we have a complex number, we plot the imaginary part on the y-axis, and the real part along

the x-axis.
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Exercise 3
Plot the following complex numbers on the graph

a) 2i b) 3 + 3i c) − 1 + i d) 9− 2
3
i

How do Complex numbers work?

Addition and subtraction, and multiplication and division are operations that are valid in all types

of numbers. For example

• N,Z, Q̄,R : a · b = a× b

• Q : a
b
· c
d
= a·c

b·d = ac
bd

But what about complex numbers? Say we have two complex numbers z and w, what would adding

and subtracting them look like, what would multiplying or dividing them look like? We define

addition and subtraction as follows. Consider z = a+ bi and w = c+ di

z + w = (a+ bi) + (c+ di) z − w = (a+ bi) + (c+ di)

= (a+ c) + (b+ d)i = (a− c) + (b− d)i
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Example 2
Consider z = 1 + 7i and w = 4 + 3i, then

z + w = (1 + 7i) + (4 + 3i) z − w = (1 + 7i)− (4 + 3i)

= (1 + 4) + (7 + 3)i = (1− 4) + (7− 3)i

= 5 + 10i = −3 + 5i

So, when we add two complex numbers, we effectively add their real parts together, and the imaginary

parts together respectively. For subtraction, subtract their real parts, and subtract their imaginary

parts together. Note though, that we’re always left with another number of the form x+ yi ∈ C.

Exercise 4
Compute the following expressions

a) (1 + 6i) + (3 + 4i) =

b) (4 + 2i)− (8− 3i) =

c) (3 + 2i) + ((2− 1i) + (3− 2i)) =

We’ll do the same for multiplication, and afterwards for division. For multiplication, we define it as

z · w = (a+ bi) · (c+ di)

= (ac− bd) + (ad+ cb)i

The reason it’s defined as such, is because we can treat the numbers as binomials, and expand like

we would non-complex binomials, like so

z · w = (a+ bi) · (c+ di)

= ac+ adi+ cbi+ bdi2

= ac+ adi+ cbi− bd

= (ac− bd) + (ad+ cb)i
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Example 3
Consider z = 1 + 2i and w = 2 + 3i, then

z · w = (1 + 2i) · (2 + 3i)

= (1 · 2− 2 · 3) + (1 · 3 + 2 · 2)i

= (2− 6) + (3 + 4)i

= −4 + 7i

For division, we define it as follows

z

w
=

a+ bi

c+ di

=
ac+ bd

c2 + d2
+

cb− ab

c2 + d2
i

To understand where this comes from, we want to introduce a fairly new concept, the fact that when

we have a fraction, comprised of two complex numbers, we want to simplify the expression so that

there isn’t an i in the denominator. We’ll multiply the fraction by the conjugate. The conjugate of

a complex number, z, is denoted z̄.

if z = a+ bi then z̄ = a− bi

All we do is flip the sign of the imaginary part! So, when dividing complex numbers, we employ the

conjugate as follow

z

w
=

z

w
· w̄
w̄

=
a+ bi

c+ di
· c− di

c− di

=
(a+ bi) · (c− di)

(c+ di) · (c− di)

=
ac− adi+ cbi− bdi2

c2 − cdi+ cdi− d2i2

=
(ac+ bd) + (cb− ad)i

c2 + d2
=

ac+ bd

c2 + d2
+

cb− ab

c2 + d2
i

10



Example 4
Consider z = 1 + 2i and w = 4− 2i, then

z

w
=

1 + 2i

4− 2i

=
1 · 4 + 2 · (−2)

42 + (−2)2
+

4 · 2− 1 · 2
42 + (−2)2

i

=
4− 4

16 + 4
+

8− 2

16 + 4
i

=
0

20
+

6

20
i

=
3

10
i

Exercise 4
Simplify the following expressions

a)
1 + i

1− i
b) (2− 3i) ·

(
1

2
− 1

3
i

)
c) ((4 + 1i)− (2 + 2i)) · (1− i) d) (2− 3i) · ((3− i) + (2 + 2i))

e)
1− 3i

5− 2i
f)

(
3

4
i

)
·
(
4

3
i+

1

3

)

Something else that mathematicians care about is the modulus of a complex number. We also call

this the magnitude. Given any complex number z = a+ bi, the modulus is defined as

|z| =
√
a2 + b2

Example 5
Consider z = 3 + 4i, then

|z| =
√
32 + 42 =

√
9 + 16 =

√
25 = 5
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If we pay close attention to the output, it looks awfully similar to a very familiar theorem, the

Pythagorean Theorem! So, the modulus gives us the length of the line segment from the graphed

complex number.

Image retrieved from Pirate Shu edu

We require this tool because complex numbers are not ordered, you cannot say one complex number

is bigger than another (i.e you cannot say z > w). Since the absolute value denotes the distance from

0, likewise, the modulus gives us the Euclidean distance from 0 in the complex plane.

Exercise 5
Find the modulus of the following complex numbers.

a) z = 1− i b) z =
√
2 +

√
2i c) z = 1 + i d) z =

−1− i

1− i
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Sets

All these numbers live inside of sets, but how do these sets work? There are unique operations with

sets, just like with numbers. When we had two sets, we can “add” them just like numbers, we call

this the union of two sets. This is denoted with the symbol ∪. Say we have two sets, A = {1, 2, 3}
and B = {3, 4, 5}, the union of these two sets is

A ∪B = {1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5}

Say we have two sets, and we want to know what elements are shared in both sets, we take the

intersection of the two sets. This is denoted with the symbol ∩. Say we have two sets, A = {1, 2, 3}
and B = {1, 3, 4}, the intersection of these two sets is

A ∩B = {1, 2, 3} ∩ {1, 3, 4} = {1, 3}

We say that A ∩ B = ∅ if the two sets share no elements in common (∅ is called the empty set).

Our last notable set notation is the complement. The complement of a set is everything that isn’t

inside of the set itself. Say the only numbers that existed were {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. If I have

a set A = {0, 1, 2, 3}, the complement, denoted Ā, is Ā = {4, 5, 6, 7, 8, 9}. This is why we call the

irrational numbers Q̄! Because the irrational numbers is the set of all real numbers that cannot be

written as a fraction! Let’s look at numbers in their sets once more. Recall that

N = {1, 2, 3, 4, ...}

Z = {...,−4,−3,−2,−1, 0, 1, 2, 3, 4, ...}

Q =

{
p

q

∣∣∣ p, q ∈ Z, q ̸= 0

}

Exercise 6
Evaluate the following set expressions

a) N ∩ I b) N ∪ Z

c) Q ∪Q d) R ∩ I

e) N ∩ Z f) R ∪ I
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